Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Diagnostics (Basel) ; 14(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667431

RESUMO

The measurement of partial pressures of oxygen (O2) and carbon dioxide (CO2) is fundamental for evaluating a patient's conditions in clinical practice. There are many ways to retrieve O2/CO2 partial pressures and concentrations. Arterial blood gas (ABG) analysis is the gold standard technique for such a purpose, but it is invasive, intermittent, and potentially painful. Among all the alternative methods for gas monitoring, non-invasive transcutaneous O2 and CO2 monitoring has been emerging since the 1970s, being able to overcome the main drawbacks of ABG analysis. Clark and Severinghaus electrodes enabled the breakthrough for transcutaneous O2 and CO2 monitoring, respectively, and in the last twenty years, many innovations have been introduced as alternatives to overcome their limitations. This review reports the most recent solutions for transcutaneous O2 and CO2 monitoring, with a particular consideration for wearable measurement systems. Luminescence-based electronic paramagnetic resonance and photoacoustic sensors are investigated. Optical sensors appear to be the most promising, giving fast and accurate measurements without the need for frequent calibrations and being suitable for integration into wearable measurement systems.

2.
Colloids Surf B Biointerfaces ; 237: 113860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520951

RESUMO

Biodegradable electrospun bone repair materials are effective means to treat bone defects. However, because the electrospun substrates are mostly organic polymer materials, there is a lack of real-time and intuitive monitoring methods for their degradation in vivo. Therefore, it is of great significance to develop in vivo traced electrospun bone repair materials for postoperative observation of their degradation. In this research, polycaprolactone/up-conversion nanoparticles/magnesium oxide (PCL/UCNPs/MgO) composite scaffolds were prepared by electrospun based on the luminescence characteristics of up-conversion nanoparticles (UCNPs) under near infrared excitation and the osteogenic ability of MgO. The in vivo and in vitro degradation results showed that with the increase of time, the electrospun scaffolds gradually degraded and its luminescence intensity decreased. The addition of UCNPs can effectively monitor the degradation of the scaffolds. In addition, the prepared electrospun scaffolds had great biocompatibility, among which PCL-1%UCNPs-1%MgO (P1U1M) electrospun scaffolds had obvious effect on promoting osteogenic differentiation of mouse embryonic osteoblasts cells (MC3T3-E1) in vitro. In conclusion, P1U1M electrospun scaffolds have the potential to induce bone regeneration at bone defect sites, and can monitor the degradation of electrospun scaffolds. It may be a potential candidate material for bone regeneration in defect area.


Assuntos
Osteogênese , Alicerces Teciduais , Camundongos , Animais , Engenharia Tecidual/métodos , Óxido de Magnésio , Regeneração Óssea , Poliésteres/farmacologia
3.
J Clin Monit Comput ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530502

RESUMO

PURPOSE: The Prone positioning in addition to non invasive respiratory support is commonly used in patients with acute respiratory failure. The aim of this study was to assess the accuracy of an impedance-based non-invasive respiratory volume monitor (RVM) in supine and in prone position. METHODS: In sedated, paralyzed and mechanically ventilated patients in volume-controlled mode with acute respiratory distress syndrome scheduled for prone positioning it was measured and compared non-invasively tidal volume and respiratory rate provided by the RVM in supine and, subsequently, in prone position, by maintaining unchanged the ventilatory setting. RESULTS: Forty patients were enrolled. No significant difference was found between measurements in supine and in prone position either for tidal volume (p = 0.795; p = 0.302) nor for respiratory rate (p = 0.181; p = 0.604). Comparing supine vs. prone position, the bias and limits of agreements for respiratory rate were 0.12 bpm (-1.4 to 1.6) and 20 mL (-80 to 120) for tidal volume. CONCLUSIONS: The RVM is accurate in assessing tidal volume and respiratory rate in prone compared to supine position. Therefore, the RVM could be applied in non-intubated patients with acute respiratory failure receiving prone positioning to monitor respiratory function.

5.
Cureus ; 16(2): e53661, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38455779

RESUMO

Background Transcutaneous carbon dioxide tension (PtcCO2) measurement is a promising alternative to arterial carbon dioxide tension (PaCO2) measurement. PaCO2 measurement is invasive and intermittent, whereas PtcCO2 measurement is non-invasive and continuous. However, previous studies evaluating PtcCO2measurements did not include patients undergoing transcatheter aortic valve replacement (TAVR), who experience anticipated hemodynamic changes, particularly before and after valve placement. Therefore, we investigated whether PtcCO2 measurement could provide an alternative to PaCO2 measurement during transfemoral TAVR under monitored anesthesia care (MAC) with local anesthesia. Methodology We conducted a prospective observational study. We included all consecutive patients with severe aortic stenosis who were scheduled to undergo a transfemoral TAVR under MAC at our institution from November 1, 2020, to April 30, 2021. During the procedures, PaCO2 and PtcCO2 were concurrently monitored six times as a reference standard and index test, respectively. PtcCO2 was monitored continuously using a non-invasive earlobe sensor. The agreement between PtcCO2 and PaCO2 measurements was assessed using the Bland-Altman method, and the 95% limits of agreement were calculated. Based on previous studies, we determined that 95% limits of agreement of ±6.0 mmHg would be clinically acceptable to define PtcCO2 as an alternative to PaCO2. Results We obtained 88 measurement pairs from 15 patients. The lower and upper 95% limits of agreement between the PtcCO2 and PaCO2 measurements were -4.22 mmHg and 6.56 mmHg, respectively. Conclusions During TAVR under MAC with local anesthesia, PtcCO2 measurement could not provide a viable alternative to PaCO2 measurement to reduce high PaCO2 events. This study focused on comparing intraoperative periods before and after valve implantation. Therefore, further investigation is warranted to assess the impact of various factors, including the prosthetic valve type and the hemodynamic effects of balloon aortic valvuloplasty, on PtcCO2 measurement in TAVR.

6.
Acta Neurochir (Wien) ; 166(1): 109, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409283

RESUMO

PURPOSE: In this research, a non-invasive intracranial pressure (nICP) optical sensor was developed and evaluated in a clinical pilot study. The technology relied on infrared light to probe brain tissue, using photodetectors to capture backscattered light modulated by vascular pulsations within the brain's vascular tissue. The underlying hypothesis was that changes in extramural arterial pressure could affect the morphology of recorded optical signals (photoplethysmograms, or PPGs), and analysing these signals with a custom algorithm could enable the non-invasive calculation of intracranial pressure (nICP). METHODS: This pilot study was the first to evaluate the nICP probe alongside invasive ICP monitoring as a gold standard. nICP monitoring occurred in 40 patients undergoing invasive ICP monitoring, with data randomly split for machine learning. Quality PPG signals were extracted and analysed for time-based features. The study employed Bland-Altman analysis and ROC curve calculations to assess nICP accuracy compared to invasive ICP data. RESULTS: Successful acquisition of cerebral PPG signals from traumatic brain injury (TBI) patients allowed for the development of a bagging tree model to estimate nICP non-invasively. The nICP estimation exhibited 95% limits of agreement of 3.8 mmHg with minimal bias and a correlation of 0.8254 with invasive ICP monitoring. ROC curve analysis showed strong diagnostic capability with 80% sensitivity and 89% specificity. CONCLUSION: The clinical evaluation of this innovative optical nICP sensor revealed its ability to estimate ICP non-invasively with acceptable and clinically useful accuracy. This breakthrough opens the door to further technological refinement and larger-scale clinical studies in the future. TRIAL REGISTRATION: NCT05632302, 11th November 2022, retrospectively registered.


Assuntos
Lesões Encefálicas Traumáticas , Hipertensão Intracraniana , Humanos , Lesões Encefálicas Traumáticas/diagnóstico , Hipertensão Intracraniana/diagnóstico , Pressão Intracraniana , Monitorização Fisiológica , Fotopletismografia , Projetos Piloto
7.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339143

RESUMO

Miscarriages affect 50-70% of all conceptions and 15-20% of clinically recognized pregnancies. Recurrent pregnancy loss (RPL, ≥2 miscarriages) affects 1-5% of recognized pregnancies. Nevertheless, our knowledge about the etiologies and pathophysiology of RPL is incomplete, and thus, reliable diagnostic/preventive tools are not yet available. Here, we aimed to define the diagnostic value of three placental proteins for RPL: human chorionic gonadotropin free beta-subunit (free-ß-hCG), pregnancy-associated plasma protein-A (PAPP-A), and placental growth factor (PlGF). Blood samples were collected from women with RPL (n = 14) and controls undergoing elective termination of pregnancy (n = 30) at the time of surgery. Maternal serum protein concentrations were measured by BRAHMS KRYPTOR Analyzer. Daily multiple of median (dMoM) values were calculated for gestational age-specific normalization. To obtain classifiers, logistic regression analysis was performed, and ROC curves were calculated. There were differences in changes of maternal serum protein concentrations with advancing healthy gestation. Between 6 and 13 weeks, women with RPL had lower concentrations and dMoMs of free ß-hCG, PAPP-A, and PlGF than controls. PAPP-A dMoM had the best discriminative properties (AUC = 0.880). Between 9 and 13 weeks, discriminative properties of all protein dMoMs were excellent (free ß-hCG: AUC = 0.975; PAPP-A: AUC = 0.998; PlGF: AUC = 0.924). In conclusion, free-ß-hCG and PAPP-A are valuable biomarkers for RPL, especially between 9 and 13 weeks. Their decreased concentrations indicate the deterioration of placental functions, while lower PlGF levels indicate problems with placental angiogenesis after 9 weeks.


Assuntos
Aborto Habitual , Proteínas da Gravidez , Gravidez , Feminino , Humanos , Proteína Plasmática A Associada à Gravidez/metabolismo , Fator de Crescimento Placentário , Primeiro Trimestre da Gravidez , Placenta/metabolismo , Gonadotropina Coriônica Humana Subunidade beta , Biomarcadores , Aborto Habitual/diagnóstico , Proteínas Sanguíneas
8.
Biosens Bioelectron ; 253: 116150, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422815

RESUMO

Accurate acquisition of physiological and physical information from human tissue is essential for health monitoring, disease prevention and treatment. The existing antennas with traditional rigid or flexible substrates are susceptible to motion artifacts in wearable applications due to the miniaturization limitation and lack of proper adhesion and conformal interfaces with the skin. Recent advances in wearable radio frequency (RF) bioelectronics directly drawn on the skin are a promising solution for future skin-interfaced devices. Herein, we present a first-of-its kind epidermal antenna architecture with skin as the antenna substrate, which is ultra-low profile, ultra-conformal, ultra-compact, and simple fabrication without specialized equipment. The radiation unit and ground of antenna are drawn directly on the skin with the strong adhesion and ultra conformality. Therefore, this RF device is highly adaptable to motion. As a proof-of- feasibility, epidermal antenna can be freely drawn on demand at different locations on the skin for the development of temperature sensor, skin hydration sensor, strain sensor, glucose sensor and other devices. An epidermal antenna-based temperature sensor can offer accurate and real-time monitoring of human body temperature changes in the ultra-wideband (UWB) range. The results during the monitoring of hydration level with and without stretching show that the epidermal antenna drawn on the skin is motion artifact-free. We also designed an epidermal antenna array employing a horseshoe-shaped configuration for the precise identification of various gestures. In addition, the non-invasive blood glucose level (BGL) monitoring results during the in-vivo experiments report high correlation between the epidermal antenna responses and BGLs, without any time hysteresis. After the prediction of BGL by BP network, all the predicted BGL values are fallen 100% into the clinically acceptable zones. Together, these results show that epidermal antenna offers a promising new approach for biosensing platform.


Assuntos
Artefatos , Técnicas Biossensoriais , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Movimento (Física) , Epiderme
9.
J Clin Monit Comput ; 38(2): 539-551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238635

RESUMO

Tidal volume (TV) monitoring breath-by-breath is not available at bedside in non-intubated patients. However, TV monitoring may be useful to evaluate the work of breathing. A non-invasive device based on bioimpedance provides continuous and real-time volumetric tidal estimation during spontaneous breathing. We performed a prospective study in healthy volunteers aimed at evaluating the accuracy, the precision and the trending ability of measurements of ExSpiron®Xi as compared with the gold standard (i.e. spirometry). Further, we explored whether the differences between the 2 devices would be improved by the calibration of ExSpiron®Xi with a pre-determined tidal volume. Analysis accounted for the repeated nature of measurements within each subject. We enrolled 13 healthy volunteers, including 5 men and 8 women. Tidal volume, TV/ideal body weight (IBW) and respiratory rate (RR) measured with spirometer (TVSpirometer) and with ExSpiron®Xi (TVExSpiron) showed a robust correlation, while minute ventilation (MV) showed a weak correlation, in both non/calibrated and calibrated steps. The analysis of the agreement showed that non-calibrated TVExSpiron underestimated TVspirometer, while in the calibrated steps, TVExSpiron overestimated TVspirometer. The calibration procedure did not reduce the average absolute difference (error) between TVSpirometer and TVExSpiron. This happened similarly for TV/IBW and MV, while RR showed high accuracy and precision. The trending ability was excellent for TV, TV/IBW and RR. The concordance rate (CR) was >95% in both calibrated and non-calibrated measurements. The trending ability of minute ventilation was limited. Absolute error for both calibrated and not calibrated values of TV, TV/IBW and MV accounting for repeated measurements was variably associated with BMI, height and smoking status. Conclusions: Non-invasive TV, TV/IBW and RR estimation by ExSpiron®Xi was strongly correlated with tidal ventilation according to the gold standard spirometer technique. This data was not confirmed for MV. The calibration of the device did not improve its performance. Although the accuracy of ExSpiron®Xi was mild and the precision was limited for TV, TV/IBW and MV, the trending ability of the device was strong specifically for TV, TV/IBW and RR. This makes ExSpiron®Xi a non-invasive monitoring system that may detect real-time tidal volume ventilation changes and then suggest the need to better optimize the patient ventilatory support.


Assuntos
Respiração , Masculino , Humanos , Feminino , Estudos Prospectivos , Voluntários Saudáveis , Volume de Ventilação Pulmonar , Medidas de Volume Pulmonar/métodos
10.
Clin Chem Lab Med ; 62(6): 1118-1125, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38253354

RESUMO

OBJECTIVES: Urea and creatinine concentrations in plasma are used to guide hemodialysis (HD) in patients with end-stage renal disease (ESRD). To support individualized HD treatment in a home situation, there is a clinical need for a non-invasive and continuous alternative to plasma for biomarker monitoring during and between cycles of HD. In this observational study, we therefore established the correlation of urea and creatinine concentrations between sweat, saliva and plasma in a cohort of ESRD patients on HD. METHODS: Forty HD patients were recruited at the Dialysis Department of the Catharina Hospital Eindhoven. Sweat and salivary urea and creatinine concentrations were analyzed at the start and at the end of one HD cycle and compared to the corresponding plasma concentrations. RESULTS: A decrease of urea concentrations during HD was observed in sweat, from 27.86 mmol/L to 12.60 mmol/L, and saliva, from 24.70 mmol/L to 5.64 mmol/L. Urea concentrations in sweat and saliva strongly correlated with the concentrations in plasma (ρ 0.92 [p<0.001] and 0.94 [p<0.001], respectively). Creatinine concentrations also decreased in sweat from 43.39 µmol/L to 19.69 µmol/L, and saliva, from 59.00 µmol/L to 13.70 µmol/L. However, for creatinine, correlation coefficients were lower than for urea for both sweat and saliva compared to plasma (ρ: 0.58 [p<0.001] and 0.77 [p<0.001], respectively). CONCLUSIONS: The results illustrate a proof of principle of urea measurements in sweat and saliva to monitor HD adequacy in a non-invasive and continuous manner. Biosensors enabling urea monitoring in sweat or saliva could fill in a clinical need to enable at-home HD for more patients and thereby decrease patient burden.


Assuntos
Creatinina , Diálise Renal , Saliva , Suor , Ureia , Humanos , Ureia/análise , Ureia/sangue , Saliva/química , Creatinina/sangue , Creatinina/análise , Suor/química , Feminino , Masculino , Estudos de Coortes , Pessoa de Meia-Idade , Idoso , Falência Renal Crônica/terapia , Falência Renal Crônica/sangue , Adulto , Biomarcadores/análise , Biomarcadores/sangue
11.
Anal Bioanal Chem ; 416(9): 2089-2095, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38093115

RESUMO

Wearable sensors would revolutionize healthcare and personalized medicine by providing individuals with continuous and real-time data about their bodies and environments. Their integration into everyday life has the potential to enhance well-being, improve healthcare outcomes, and offer new opportunities for research. Capacitive sensors technology has great potential to enrich wearable devices, extending their use to more accurate physiological indicators. On the basis of capacitive sensors developed so far to monitor physical parameters, and taking into account the advances in capacitive biosensors, this work discusses the benefits of this type of transduction to design wearables for the monitoring of biomolecules. Moreover, it provides insights into the challenges that must be overcome to take advantage of capacitive transduction in wearable sensors for health.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/métodos , Análise Espectral
12.
Adv Healthc Mater ; 13(6): e2302687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940192

RESUMO

In situ monitoring of bone tissue regeneration progression is critical for the development of bone tissue engineering scaffold. However, engineered scaffolds that can stimulate osteogenic progress and allow for non-invasive monitoring of in vivo bone regeneration simultaneously are rarely reported. Based on a hard-and-soft integration strategy, a multifunctional scaffold composed of 3D printed microfilaments and a hydrogel network containing simvastatin (SV), indocyanine green-loaded superamphiphiles, and aminated ultrasmall superparamagnetic iron oxide nanoparticles (USPIO-NH2 ) is fabricated. Both in vitro and in vivo results demonstrate that the as-prepared scaffold significantly promotes osteogenesis through controlled SV release. The biocomposite scaffold exhibits alkaline phosphatase-responsive near-infrared II fluorescence imaging. Meanwhile, USPIO-NH2 within the co-crosslinked nanocomposite network enables the visualization of scaffold degradation by magnetic resonance imaging. Therefore, the biocomposite scaffold enables or facilitates non-invasive in situ monitoring of neo-bone formation and scaffold degradation processes following osteogenic stimulation, offering a promising strategy to develop theranostic scaffolds for tissue engineering.


Assuntos
Osso e Ossos , Procedimentos de Cirurgia Plástica , Imageamento por Ressonância Magnética , Osteogênese , Fosfatase Alcalina
13.
J Neurotrauma ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37861291

RESUMO

Intracranial pressure (ICP) monitoring is necessary for managing patients with traumatic brain injury (TBI). Although gold-standard methods include intraventricular or intraparenchymal transducers, these systems cannot be used in patients with coagulopathies or in those who are at high risk of catheter-related infections, nor can they be used in resource-constrained settings. Therefore, a non-invasive modality that is more widely available, cost effective, and safe would have tremendous impact. Among such non-invasive choices, transcranial Doppler (TCD) provides indirect ICP estimates through waveform analysis of cerebral hemodynamic changes. The objective of this scoping review is to describe the existing evidence for the use of TCD-derived methods in estimating ICP in adult TBI patients as compared with gold-standard invasive methods. This review was conducted in accordance with the Joanna Briggs Institute methodology for scoping reviews, with a main search of PubMed and Embase. The search was limited to studies conducted in adult TBI patients published in any language between 2012 and 2022. Twenty-two studies were included for analysis, with most being prospective studies conducted in high-income countries. TCD-derived non-invasive ICP (nICP) methods are either mathematical or non-mathematical, with the former having slightly better correlation with invasive methods, especially when using time-trending ICP dynamics over one-time estimated values. Nevertheless, mathematical methods are associated with greater cost and complexity in their application. Formula-based methods showed promise in excluding elevated ICP, exhibiting a high negative predictive value. Therefore, TCD-derived methods could be useful in assessing ICP changes instead of absolute ICP values for high-risk patients, especially in low-resource settings.

14.
J Nanobiotechnology ; 21(1): 411, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936115

RESUMO

The rapid advancement of wearable biosensors has revolutionized healthcare monitoring by screening in a non-invasive and continuous manner. Among various sensing techniques, field-effect transistor (FET)-based wearable biosensors attract increasing attention due to their advantages such as label-free detection, fast response, easy operation, and capability of integration. This review explores the innovative developments and applications of FET-based wearable biosensors for healthcare monitoring. Beginning with an introduction to the significance of wearable biosensors, the paper gives an overview of structural and operational principles of FETs, providing insights into their diverse classifications. Next, the paper discusses the fabrication methods, semiconductor surface modification techniques and gate surface functionalization strategies. This background lays the foundation for exploring specific FET-based biosensor designs, including enzyme, antibody and nanobody, aptamer, as well as ion-sensitive membrane sensors. Subsequently, the paper investigates the incorporation of FET-based biosensors in monitoring biomarkers present in physiological fluids such as sweat, tears, saliva, and skin interstitial fluid (ISF). Finally, we address challenges, technical issues, and opportunities related to FET-based biosensor applications. This comprehensive review underscores the transformative potential of FET-based wearable biosensors in healthcare monitoring. By offering a multidimensional perspective on device design, fabrication, functionalization and applications, this paper aims to serve as a valuable resource for researchers in the field of biosensing technology and personalized healthcare.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/métodos , Suor/química , Saliva , Biomarcadores/análise
15.
Animals (Basel) ; 13(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37835733

RESUMO

Heartworm (HW) disease, caused by Dirofilaria immitis, is a life-threatening ailment in dogs. HW disrupts blood flow and decreases cardiac output (CO). The accurate monitoring of CO during HW extraction is pivotal for patient survival and overall health. OBJECTIVE: This study aimed to assess the efficacy of using impedance cardiography (ICG) as a non-invasive approach for monitoring CO during interventional HW extraction. METHODS: Two cases of HW infections were treated via surgical extraction. The CO and mean arterial pressure (MAP) were monitored using the ICG technique during the anesthesia stabilization, extraction process, and post-extraction phases. RESULTS: In Case 1, the CO increased by 115% post-procedure, and in Case 2, the CO increased by 116%. In contrast, the MAP varied between the two cases. The ICG method provided real-time CO data without major disruptions during the extraction surgery. CONCLUSION: The ICG technique for CO monitoring during interventional HW extractions is effective.

16.
Neurosurg Rev ; 46(1): 263, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801134

RESUMO

Severe traumatic brain injury (TBI) disrupts cerebral autoregulation (CAR), which may increase the risk of secondary neuronal damage in victims with large fluctuations in blood pressure (BP). CAR is also impaired in mild TBI. Given that mild TBI accounts for up to 70% of cases, this issue needs to be addressed. Physiological and non-invasive methods are now required to study CAR without the sharp fluctuations in blood pressure that underlie CAR tests. The cross-spectral analysis of fluctuations between cerebral blood flow and blood pressure discussed in the article is truly non-invasive and physiological. Forty-eight victims with mild traumatic brain injury were studied. CAR was assessed using two methods. The cuff test was used as a control method to assess autoregulation (RoR). Non-invasive cross-spectral analysis with phase shift (PS) detection was performed. The RoR values were normal, but there were cases within the group with varying severity of symptoms of the acute period of mild TBI. For example, the RoR was significantly higher (p < 0.001) in 32 patients with regression of symptoms than in 16 with persistence of symptoms. Their RoR and PS indicated a violation of the CAR, which required correction of the treatment. It was found that in 1/3 of the patients with mild TBI, a different state of CAR required individual tactics. RoR and PS correlated well.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Pressão Intracraniana/fisiologia , Homeostase/fisiologia , Circulação Cerebrovascular/fisiologia
17.
Bioengineering (Basel) ; 10(8)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37627817

RESUMO

Acute kidney injury (AKI) is a major postoperative complication that lacks established intraoperative predictors. Our objective was to develop a prediction model using preoperative and high-frequency intraoperative data for postoperative AKI. In this retrospective cohort study, we evaluated 77,428 operative cases at a single academic center between 2016 and 2022. A total of 11,212 cases with serum creatinine (sCr) data were included in the analysis. Then, 8519 cases were randomly assigned to the training set and the remainder to the validation set. Fourteen preoperative and twenty intraoperative variables were evaluated using elastic net followed by hierarchical group least absolute shrinkage and selection operator (LASSO) regression. The training set was 56% male and had a median [IQR] age of 62 (51-72) and a 6% AKI rate. Retained model variables were preoperative sCr values, the number of minutes meeting cutoffs for urine output, heart rate, perfusion index intraoperatively, and the total estimated blood loss. The area under the receiver operator characteristic curve was 0.81 (95% CI, 0.77-0.85). At a score threshold of 0.767, specificity was 77% and sensitivity was 74%. A web application that calculates the model score is available online. Our findings demonstrate the utility of intraoperative time series data for prediction problems, including a new potential use of the perfusion index. Further research is needed to evaluate the model in clinical settings.

18.
Cell ; 186(17): 3706-3725.e29, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37562402

RESUMO

The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.


Assuntos
Medula Óssea , Doenças do Sistema Nervoso , Crânio , Animais , Humanos , Camundongos , Medula Óssea/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Crânio/citologia , Crânio/diagnóstico por imagem
19.
Front Med (Lausanne) ; 10: 1138051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497278

RESUMO

Objectives: Continuous non-invasive monitoring of blood pressure is one of the main factors in ensuring the safety of the patient's condition in anesthesiology, intensive care, surgery, and other areas of medicine. The purpose of this work was to analyze the current patent situation and identify directions and trends in the application of non-invasive medical sensors for continuous blood pressure monitoring, with a focus on clinical experience in critical care and validation thereof. Materials and methods: The research results reflect data collected up to September 30, 2022. Patent databases, Google Scholar, the Lens database, Pubmed, Scopus databases were used to search for patent and clinical information. Results: An analysis of the patent landscape indicates a significant increase in interest in the development of non-invasive devices for continuous blood pressure monitoring and their implementation in medical practice, especially in the last 10 years. The key players in the intellectual property market are the following companies: Cnsystems Medizintechnik; Sotera Wireless INC; Tensys Medical INC; Healthstats Int Pte LTD; Edwards Lifesciences Corp, among others. Systematization of data from validation and clinical studies in critical care practice on patients with various pathological conditions and ages, including children and newborns, revealed that a number of non-invasive medical sensor technologies are quite accurate and comparable to the "gold standard" continuous invasive blood pressure monitoring. They are approved by the FDA for medical applications and certified according to ISO 81060-2, ISO 81060-3, and ISO/TS 81060-5. Unregistered and uncertified medical sensors require further clinical trials. Conclusion: Non-invasive medical sensors for continuous blood pressure monitoring do not replace, but complement, existing methods of regular blood pressure measurement, and it is expected to see more of these technologies broadly implemented in the practice in the near future.

20.
J Clin Monit Comput ; 37(6): 1619-1626, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436599

RESUMO

PURPOSE: Temperature monitoring in the perioperative setting often represents a compromise between accuracy, invasiveness of probe placement, and patient comfort. Transcutaneous sensors using the Zero-Heat-Flux (ZHF) and Double-Sensor (DS) technology have been developed and evaluated in a variety of clinical settings. The present study is the first to compare the performance of both sensors simultaneously with temperature measured by a Swan-Ganz catheter (PAC) in patients admitted to the intensive care unit (ICU) after cardiac surgery. METHODS: In this monocentric prospective observational study patients were postoperatively transferred to the ICU and both sensors were placed on the patients' foreheads. Core body temperature measured by intraoperatively placed PAC served as gold standard. Measurements were recorded at 5-minute intervals and up to 40 data sets per patient were recorded. Bland and Altman's method for repeated measurements was used to analyse agreement. Subgroup analyses for gender, body-mass-index, core temperature, airway status and different time intervals were performed. Lin's concordance correlation coefficient (LCCC) was calculated, as well as sensitivity and specificity for detecting hyperthermia (≥ 38 °C) and hypothermia (< 36 °C). RESULTS: Over a period of six month, we collected 1600 sets of DS, ZHF, and PAC measurements, from a total of 40 patients. Bland-Altman analysis revealed a mean bias of -0.82 ± 1.27 °C (average ± 95% Limits-of-Agreement (LoA)) and - 0.54 ± 1.14 °C for DS and ZHF, respectively. The LCCC was 0.5 (DS) and 0.63 (ZHF). Mean bias was significantly higher in hyperthermic and hypothermic patients. Sensitivity and specificity were 0.12 / 0.99 (DS) and 0.35 / 1.0 (ZHF) for hyperthermia and 0.95 / 0.72 (DS) and 1.0 / 0.85 (ZHF) for hypothermia. CONCLUSION: Core temperature was generally underestimated by the non-invasive approaches. In our study, ZHF outperformed DS. In terms of agreement, results for both sensors were outside the range that is considered clinically acceptable. Nevertheless, both sensors might be adequate to detect postoperative hypothermia reliably when more invasive methods are not available or appropriate. TRIAL REGISTRATION: German Register of Clinical Trials (DRKS-ID: DRKS00027003), retrospectively registered 10/28/2021.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Hipotermia , Humanos , Temperatura Corporal , Hipotermia/diagnóstico , Unidades de Terapia Intensiva , Termômetros , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...